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Note 

Stability Analysis of Finite Difference 
Schemes for Quantum Mechanical 

Equations of Motion 

1. INTRODUCTION 

Finite difference (FD) schemes are extensively employed to obtain approximate 
numerical solutions for initial boundary value problems representing a wide variety 
of physical phenomena. In the course of developing an FD scheme, for solving a 
time-dependent Kohn-Sham-type equation (given in Section 4) for ion-atom 
collisions [ 11, derived through density functional theory and quantum fluid 
dynamics [2, 31, we have observed that stability conditions are not laid down 
satisfactorily for partial differential equations containing i ( i2 = - 1). In this note we 
examine this situation for two broad categories of problems and provide 
appropriate stability criteria for equations containing i. Note that all these 
equations contain both space and time variables. 

Consider the FD schemes for the following equations: 

(i) 

(ii) 

au a% au a-+b-+ccu; at’ ax2 ax o<x<x, t>O 

u(0, t) = 0, u(X, t)=O; t30 
44 0) =f(x); o<x<x. 

au a% ati 
i-=u---+b-+ccu; at ax* ax o<x<x, t>O 

(1) 

u(0, t) = 0, u(X, t) = 0; t>O 

4% 0) =f(x); OdxdX. (2) 

Equation (1) describes, for example, diffusion processes in nature while Eq. (2) 
occurs in quantum mechanical equations of motion. In both (i) and (ii), the quan- 
tities a, b and c are functions of x, t or even U, thereby embracing both linear and 
nonlinear equations. However, for simplicity, most of our discussion will treat 
a, b, c as constants. 

Although there are extensive discussions in the literature [4-61 of FD schemes 
for (i) and FD schemes for (ii) have been employed by a number of workers 
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[7-lo], there is, unfortunately, very little discussion on the efficacy of these 
schemes: epecially concerning their stability with regard to both space- and time- 
step sizes. In this note we will study the stability properties of FD schemes for (ii) 
and compare them with those of FD schemes for (i). 

It is well known that any two-level FD scheme for such problems is of the form 

c a U”f’, 
J J 1 8J”I’, (3) 

JENI JENz 

where N,, N2 are sets of integers; IZ, j denote particular mesh points in time and 
space, respectively; N is the total number of space-steps, i.e., 

IL,” = u(jh, n At); Nh=NAx=X; j= 1, 2,..., (N-l). (4) 

Von Neumann’s method of testing stability, by using the Fourier series method (see 
Section 2), involves substitution of pnerJp for u; into (3) and then ensuring lpi < 1 
for stability [ll]. The matrix method (see Section 3) on the other hand, involves 
obtaining I!?+ ’ = BU” for the vector of unknowns at the spatial grid-points (u, 1. 
The method is stable if the matrix B is convergent, i.e., the magnitudes of all the 
eigenvalues of B are less than unity [12]. As noted in [4], the Fourier series 
method is not rigorous, in the sense that it does not take care of the boundary con- 
ditions, whereas the matrix method is a direct reflection of the actual computation 
process. 

In what follows, the FD approximation for the spatial derivative in (1) and (2) is 
taken as 

p(u,) = a(u,+ 1 -2q+u;-Jh2+b(u,+,-u,&‘2h+cuJ. (5) 

In Section 2, we will show that the Fourier series method of testing stability can 
lead to wrong conclusions for the FD scheme 

iu”+‘=iu,“+dt[B~(ul’+‘)+(1-B)i~(u:’)1 I (61 

in solving (2). Here 6’= 0, f and 1 signifies fully explicit, Crank-Nicolson and fully 
implicit schemes, respectively [4]. The stability analysis of these schemes reveals 
certain interesting features, especially regarding the choice of step-size in a spatial 
direction. These are presented in Section 3. Section 4 discusses the implications of 
these results with regard to FD schemes for solving quantum mechanical equations 
of motion. 

2. FAILURE OF THE FOURIER SERIES METHOD 

In (6), substitution of p” e@ for u,“, followed by simplification, leads to the 
growth factor 

p = $1 + (1 - 6) At(b/h) sin /?I + (l-0) At[c- (4a/h2) sin*(j?/2)] 
i[l - 8 At(b/h) sin /?I - 0 AtCc- (4a/h2) sin2(b/2)] ’ (7) 
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From (7), it appears that IpIG if 

#$sin2/I+(c--~sin2~~]+~sinp<0 (8) 

for all /I. This clearly indicates that (6) is unstable for f3 < + (explicit schemes). 
Further, even the Crank-Nicolson scheme (Q= i), which is known to be uncon- 
ditionally stable when applied to solve heat diffusion equations [ 131, becomes 
unstable for any step-size At. We also note that stability limitations for 0 > 4 
(implicit schemes) cannot be explicitly obtained. The underlying reason for these 
curious observations is that the step-size in a spatial direction plays an important 
role in stability studies, which is not brought out by the Fourier series method. 
However, as seen below, the matrix method will clearly reveal the important 
limitations on both the step-sizes, At and Ax (i.e., h). 

3. THE MATRIX METHOD 

In matrix notation, one can write (6) as 

u n+l =BU”, 

where 

(9) 

B= [I-At&4~‘[I+At(l -@A]. (10) 

Here I is the (N - 1) x (N - 1) identity matrix and the (N - 1) x (N - 1) tridiagonal 
matrix A is given by 

A= -i i P 0 rp 4 rp9 4 r co1 P 4 CO1 0 r P 1. (11) 

In (llh 

2a a b a b 

p= -P+cc; 4=p+z; r=P-2i; (12) 

Now, the eigenvalues {AS} of A are [4] 

shn 
p+2(qr)‘12cos x ( >I ; s= 1, 2 )...) (N- 1). (13) 
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In order that the FD scheme be stable, 

1 +Llt(l -@A, 
1 -At& 6 1; s = 1, 2,..., (M- 1). 

If the spatial step-size is chosen as 

then 1, is a pure imaginary number &(,M~ real) and stability prevails if 

1 + (At)2p,2(1 - 6)‘< 1 + (At)2p,20z, (16) 

i.e., if 8 3 4. For 8 <t, scheme (6) is unstable for any step-size At. We thus observe 
that the Crank-Nicolson scheme is stable, contrary to the conclusion reached by 
the Fourier series method. 

Consider now the situation 

Then 

;l,r= -i[p+iycos($)], (18) 

where 

y=~[(g+l)(g-l)]112. 
The FD scheme is stable if 

l+At(l-O)[-ip+ycos(sh~~/X)] <1 
1 -At f?[-ip + y cos(sh7c/X)] - ’ ’ 

Condition (20) will be true if 

i 
l+At(l-6)ycos $ ( )I 

2 
+ (At)2(1 - @)‘p” 

i.e., if 

f=(28-l)At[y’cos’($)+p’]-2ycos($)$o. 
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Condition (22) will be valid only if 

(1-28)<0, 

i.e., 

l3>$. 

For 8 > i, a minimum in f exists for 

Then 

df -=2(28-1)dty*g-22y=o. 
& 

(23) 

(24) 

(25) 

In other words, 

1 
g mm= (28- 1)y dt’ (26) 

(Note that at g,,,, d2f/dg2 = 2(28 - 1) A? y2 = ( + )ve.) 
Let f decrease with g increasing in (0, cos(hrc/X)], with the minimum lying 

outside this interval. Then, in case 

1 
At < (20 - 1)y cos(h7qX) (27) 

condition (22) will be satisfied if 

2y cos(hn/X) 
Ata (28- l)[y2 cos*(h7L/x) + $1’ (28) 

Alternatively, in case 

1 
At’ (28 - 1) y cos(h7c/X)’ (29) 

the stability condition (22) is satisfied if 

[ 
1 

(2e-1)At 72(2&1)2:,2At2+P2 1 
1 

--‘(28- l)y At”’ (30) 
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i.e.. if 

Thus, we are led to the following two conditions, with stability prevailing in 
either of the two cases: 

[ 

1 1 
(i) At3max (26- l)ycos(hn/X)’ /(2& l)pJ 1 
. . 

(11) 
2y cos(hL/X) 1 

(20 - 1 )[y2 cos*(hn/X) + p’] d At d (28 - 1 )y cos(h?T/X)’ 

Note that condition (32) is not physically meaningful. Hence, the implicit scheme is 
stable if the step-size At is chosen according to (33). 

4. DISCUSSION 

We now make a few comparative remarks on the stability of FD schemes for 
problems (i) and (ii) in Section 1, with particular reference to (ii). 

A. As 0 increases, the hierarchy of schemes for (i) and (ii) is maintained. Explicit 
schemes for (ii) are unconditionally unstable, contrary to the conditional stability of 
explicit schemes for (i). Implicit schemes for (ii) are conditionally stable whereas the 
corresponding schemes for (i) are unconditionally stable. 

B. Consider the use of the separation of variables technique for the following 
simplified versions of problems (i) and (ii): 

(iii) 

(iv) 

where each subscript denotes one partial differentiation with respect to the variable. 
In order that the solutions be physically meaningful, the solution of the diffusion 
equation (34) contains time in the exponential part whereas the solution for (35) is 
trigonometric in both space and time variables. This implies that analytical 
solutions of equations of type (ii) are inherently stable, unlike those of type (i). 
Note also that, in case of simple diffusion equations, the difference equations for the 
error have solutions which are trigonometric in the space variable and exponential 
in the time variable. This exponential behaviour with respect to time is really 
decided by the nature of the analytic solution rather than the contention of 0 
et al. [ 111, who say that “the one and only one solution which reduces to erBx when 
t = 0 is ea*eQr.” 
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A special equation of type (ii) is the nonlinear Schrodinger (NLS) equation 

iu,= -24,)2 lu12u. (36) 

According to the discussion in Section 3, numerical solutions of this equation are 
stable.’ In fact, the semi-discrete approximation 

&L 
dt 

- -i[(u,+,-2u,+u,~,)/h2+2 Iu,I’u,] (37) 

is such that the eigenvalues of the Jacobian matrix of this system are purely 
imaginary. Accordingly, the solutions are trigonometric in nature and therefore 
bounded. 

C. Price et al. [ 171 have considered problems of type (i), with c = 0. In this case, 
numerical solutions with h > 2 lb/al give rise to spurious oscillations, although the 
fully implicit scheme is unconditionally stable and nonoscillatory for any step-size 
At. However, for problems of type (ii), with h > 2 lb/al, stability criteria for the 
implicit scheme impose certain restrictions on At (see Section 3). 

Finally, as an example of a generalized NLS equation, two of us have recently 
derived [I] a time-dependent Kohn-Sham-type equation in three-dimensional 
space based on both density functional theory and quantum fluid dynamics [2, 31. 
For a system with spherical symmetry, the equation can be transformed to 

1 ay 1 aY .dY 
-gg,,z+,,,,,+QTCY2 ‘lu=q (38) 

By treating the variable coefficients as constants during stability analysis, one can 
readily show that any implicit scheme is stable because the eigenvalues of the 
matrix A (see Section 3) are always purely imaginary. For then, h < 1247 = 2x. 
Obviously, h is always less than 2x, since the first mesh point contains the Dirichlet 
data and from the second mesh point onwards h < 2x. 

5. CONCLUSION 

We have shown that, for a partial differential equation involving both space and 
time variables, stability criteria change drastically if the equation contains i 
(i” = -l), as is the case with quantum mechanical equations of motion. The restric- 
tion on the step-size in time is not sufficient to ensure stability of the numerical 
solution. Indeed, the mesh structure in the space variable plays a very important 

’ It was first pointed out by Benjamin and Feir [14, 151 that, for the NLS equation, the solution of 
the hermitian eigenvalue problem with the (+ ) sign has real eigenvalues and hence “stable” solutions; 
solitons result from the “unstable” equation with the (-) sign 1161. This “instability” has a different 
meaning compared to the instability being considered in this paper, viz. the unbounded growth of error. 
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role and can lead to wrong results if not chosen properly, even if the step-size in 
time is quite small. It was also observed that, for such equations, the usual Fourier 
series method for stability analysis is inadequate, whereas the matrix method is 
satisfactory. It may be worthwhile to look for a general Fourier series method 
which can be applied to the stability of finite difference schemes for any partial dif- 
ferential equation. 

The principal result in this paper, viz. the stability of FD schemes for q~a~t~rn 
mechanical equations of motion depends on both spatial and temporal zoning, may 
also be understood on physical grounds. One may compare (i) a free particle 
Green’s function (GF) to the solution of a simple diffusion equation (DE) and (ii) 
the quantum mechanical motion of a free particle to Fresnel diffraction in optics. 
case (i), the time-dependence of the DE solution is exponential and thus a source 
point has a limited range of influence at later times. However, the GF is oscillatory 
in time so that source points influence the wavefunction even at relatively large dis- 
tances Clearly, the spatial grid should be tine enough to adequately account for 
these oscillations. In case (ii), the usual requirement that the mesh size in time 
should be larger than a constant times the square of the spatial grid size is related 
to the oscillations of the Fresnel integral at relatively short distances. This, in turn, 
is related to the frequency of oscillations of the GF.’ 
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